Polar bears (two pictured) can walk easily across slippery surfaces.

Brian McMahon/Unsplash

Tiny “fingers” can help polar bears get a grip.

Like the rubbery nubs on the bottom of baby socks, microstructures on the bears’ paw pads offer some extra friction, scientists report November 1 in the Journal of the Royal Society Interface . The pad protrusions may keep polar bears from slipping on snow, says Ali Dhinojwala, a polymer scientist at the University of Akron in Ohio who has also studied the sticking power of gecko feet ( SN: 8/9/05 ).

Headlines and summaries of the latest Science News articles, delivered to your inbox

Thank you for signing up!

There was a problem signing you up.

Nathaniel Orndorf, a materials scientist at Akron who focuses on ice, adhesion and friction, was interested in the work Dhinojwala’s lab did on geckos, but “we can’t really put geckos on the ice,” he says. So he turned to polar bears.

Orndorf teamed up with Dhinojwala and Austin Garner, an animal biologist now at Syracuse University in New York, and compared the paws of polar bears, brown bears, American black bears and a sun bear. All but the sun bear had paw pad bumps. But the polar bears’ bumps looked a little different. For a given diameter, their bumps tend to be taller, the team found. That extra height translates to more traction on lab-made snow, experiments with 3-D printed models of the bumps suggest.

Until now, scientists didn’t know that bump shape could make the difference between gripping and slipping, Dhinojwala says.

Polar bear paw pads are also ringed with fur and are smaller than those of other bears, the team reports, adaptations that might let the Arctic animals conserve body heat as they trod upon ice. Smaller pads generally mean less real estate for grabbing the ground. So extra-grippy pads could help polar bears make the most of what they’ve got, Orndorf says.

Along with bumpy pads, the team hopes to study polar bears’ fuzzy paws and short claws, which might also give the animals a nonslip grip.

N. Orndorf, A.M. Garner and A. Dhinojwala. Polar bear paw pad surface roughness and its relevance to contact mechanics on snow . Journal of the Royal Society Interface . Published online November 1, 2022. doi: 10.1098/rsif.2022.0466.

Meghan Rosen is a staff writer who reports on the life sciences for Science News . She earned a Ph.D. in biochemistry and molecular biology with an emphasis in biotechnology from the University of California, Davis, and later graduated from the science communication program at UC Santa Cruz.

Science News was founded in 1921 as an independent, nonprofit source of accurate information on the latest news of science, medicine and technology. Today, our mission remains the same: to empower people to evaluate the news and the world around them. It is published by the Society for Science, a nonprofit 501(c)(3) membership organization dedicated to public engagement in scientific research and education (EIN 53-0196483).

Subscribers, enter your e-mail address for full access to the Science News archives and digital editions.

Not a subscriber?
Become one now .

Here’s how polar bears might get traction on snow