What to expect from AI in 2023 • TechCrunch

What to expect from AI in 2023 • TechCrunch

As a rather commercially successful author once wrote, “the night is dark and full of terrors, the day bright and beautiful and full of hope.” It’s fitting imagery for AI, which like all tech has its upsides and downsides.

Art-generating models like Stable Diffusion , for instance, have led to incredible outpourings of creativity, powering apps and even entirely new business models . On the other hand, its open source nature lets bad actors to use it to create deepfakes at scale — all while artists protest that it’s profiting off of their work .

What’s on deck for AI in 2023? Will regulation rein in the worst of what AI brings, or are the floodgates open? Will powerful, transformative new forms of AI emerge, a la ChatGPT , disrupt industries once thought safe from automation?

With the success of Lensa , the AI-powered selfie app from Prisma Labs that went viral, you can expect a lot of me-too apps along these lines. And expect them to also be capable of being tricked into creating NSFW images , and to disproportionately sexualize and alter the appearance of women.

Maximilian Gahntz, a senior policy researcher at the Mozilla Foundation, said he expected integration of generative AI into consumer tech will amplify the effects of such systems, both the good and the bad.

Stability AI, the startup behind Stable Diffusion, raises $101M

Stable Diffusion, for example, was fed billions of images from the internet until it “learned” to associate certain words and concepts with certain imagery. Text-generating models have routinely been easily tricked into espousing offensive views or producing misleading content.

Mike Cook, a member of the Knives and Paintbrushes open research group, agrees with Gahntz that generative AI will continue to prove a major — and problematic — force for change. But he thinks that 2023 has to be the year that generative AI “finally puts its money where its mouth is.”

Prompt by TechCrunch, model by Stability AI, generated in the free tool Dream Studio.

Prompt by TechCrunch, model by Stability AI, generated in the free tool Dream Studio.

“It’s not enough to motivate a community of specialists [to create new tech] — for technology to become a long-term part of our lives, it has to either make someone a lot of money, or have a meaningful impact on the daily lives of the general public,” Cook said. “So I predict we’ll see a serious push to make generative AI actually achieve one of these two things, with mixed success.”

DeviantArt released an AI art generator built on Stable Diffusion and fine-tuned on artwork from the DeviantArt community. The art generator was met with loud disapproval from DeviantArt’s longtime denizens, who criticized the platform’s lack of transparency in using their uploaded art to train the system.

The creators of the most popular systems — OpenAI and Stability AI — say that they’ve taken steps to limit the amount of harmful content their systems produce. But judging by many of the generations on social media, it’s clear that there’s work to be done.

“The data sets require active curation to address these problems and should be subjected to significant scrutiny, including from communities that tend to get the short end of the stick,” Gahntz said, comparing the process to ongoing controversies over content moderation in social media.

Shutterstock to integrate OpenAI’s DALL-E 2 and launch fund for contributor artists

Stability AI, which is largely funding the development of Stable Diffusion, recently bowed to public pressure, signaling that it would allow artists to opt out of the data set used to train the next-generation Stable Diffusion model. Through the website HaveIBeenTrained.com, rightsholders will be able to request opt-outs before training begins in a few weeks’ time.

OpenAI offers no such opt-out mechanism, instead preferring to partner with organizations like Shutterstock to license portions of their image galleries. But given the legal and sheer publicity headwinds it faces alongside Stability AI, it’s likely only a matter of time before it follows suit.

The courts may ultimately force its hand. In the U.S. Microsoft, GitHub and OpenAI are being sued in a class action lawsuit that accuses them of violating copyright law by letting Copilot, GitHub’s service that intelligently suggests lines of code, regurgitate sections of licensed code without providing credit.

GitHub launches Copilot for Business plan as legal questions remain unresolved

Perhaps anticipating the legal challenge, GitHub recently added settings to prevent public code from showing up in Copilot’s suggestions and plans to introduce a feature that will reference the source of code suggestions. But they’re imperfect measures. In at least one instance , the filter setting caused Copilot to emit large chunks of copyrighted code including all attribution and license text.

Expect to see criticism ramp up in the coming year, particularly as the U.K. mulls over rules that would that would remove the requirement that systems trained through public data be used strictly non-commercially.

2022 saw a handful of AI companies dominate the stage, primarily OpenAI and Stability AI. But the pendulum may swing back towards open source in 2023 as the ability to build new systems moves beyond “resource-rich and powerful AI labs,” as Gahntz put it.

A community approach may lead to more scrutiny of systems as they are being built and deployed, he said: “If models are open and if data sets are open, that’ll enable much more of the critical research that has pointed to a lot of the flaws and harms linked to generative AI and that’s often been far too difficult to conduct.”

OpenFold

Image Credits: Results from OpenFold, an open source AI system that predicts the shapes of proteins, compared to DeepMind’s AlphaFold2.

Image Credits: Results from OpenFold, an open source AI system that predicts the shapes of proteins, compared to DeepMind’s AlphaFold2.

Examples of such community-focused efforts include large language models from EleutherAI and BigScience, an effort backed by AI startup Hugging Face. Stability AI is funding a number of communities itself, like the music-generation-focused Harmonai and OpenBioML , a loose collection of biotech experiments.

Money and expertise are still required to train and run sophisticated AI models, but decentralized computing may challenge traditional data centers as open source efforts mature.

BigScience took a step toward enabling decentralized development with the recent release of the open source Petals project. Petals lets people contribute their compute power, similar to Folding@home, to run large AI language models that would normally require an high-end GPU or server.

Petals is creating a free, distributed network for running text-generating AI

“Modern generative models are computationally expensive to train and run. Some back-of-the-envelope estimates put daily ChatGPT expenditure to around $3 million,” Chandra Bhagavatula, a senior research scientist at the Allen Institute for AI, said via email. “To make this commercially viable and accessible more widely, it will be important to address this.”

Chandra points out, however, that that large labs will continue to have competitive advantages as long as the methods and data remain proprietary. In a recent example, OpenAI released Point-E , a model that can generate 3D objects given a text prompt. But while OpenAI open sourced the model, it didn’t disclose the sources of Point-E’s training data or release that data.

OpenAI Point-E

Point-E generates point clouds.

Point-E generates point clouds.

“I do think the open source efforts and decentralization efforts are absolutely worthwhile and are to the benefit of a larger number of researchers, practitioners and users,” Chandra said. “However, despite being open-sourced, the best models are still inaccessible to a large number of researchers and practitioners due to their resource constraints.”

Regulation like the EU’s AI Act may change how companies develop and deploy AI systems moving forward. So could more local efforts like New York City’s AI hiring statute, which requires that AI and algorithm-based tech for recruiting, hiring or promotion be audited for bias before being used.

Chandra sees these regulations as necessary especially in light of generative AI’s increasingly apparent technical flaws, like its tendency to spout factually wrong info.

“This makes generative AI difficult to apply for many areas where mistakes can have very high costs — e.g. healthcare. In addition, the ease of generating incorrect information creates challenges surrounding misinformation and disinformation,” she said. “[And yet] AI systems are already making decisions loaded with moral and ethical implications.”

The EU’s AI Act could have a chilling effect on open source efforts, experts warn

Next year will only bring the threat of regulation, though — expect much more quibbling over rules and court cases before anyone gets fined or charged. But companies may still jockey for position in the most advantageous categories of upcoming laws, like the AI Act’s risk categories.

The rule as currently written divides AI systems into one of four risk categories, each with varying requirements and levels of scrutiny. Systems in the highest risk category, “high-risk” AI (e.g. credit scoring algorithms, robotic surgery apps), have to meet certain legal, ethical and technical standards before they’re allowed to enter the European market. The lowest risk category, “minimal or no risk” AI (e.g. spam filters, AI-enabled video games), imposes only transparency obligations like making users aware that they’re interacting with an AI system.

Os Keyes, a Ph.D. Candidate at the University of Washington, expressed worry that companies will aim for the lowest risk level in order to minimize their own responsibilities and visibility to regulators.

“That concern aside, [the AI Act] really the most positive thing I see on the table,” they said. “I haven’t seen much of anything out of Congress.”

Gahntz argues that, even if an AI system works well enough for most people but is deeply harmful to some, there’s “still a lot of homework left” before a company should make it widely available. “There’s also a business case for all this. If your model generates a lot of messed up stuff, consumers aren’t going to like it,” he added. “But obviously this is also about fairness.”

It’s unclear whether companies will be persuaded by that argument going into next year, particularly as investors seem eager to put their money beyond any promising generative AI.

In the midst of the Stable Diffusion controversies, Stability AI raised $101 million at an over-$1 billion valuation from prominent backers including Coatue and Lightspeed Venture Partners. OpenAI is said to be valued at $20 billion as it enters advanced talks to raise more funding from Microsoft. (Microsoft previously invested $1 billion in OpenAI in 2019.)

Of course, those could be exceptions to the rule.

Jasper AI

Image Credits: Jasper

Image Credits: Jasper

Outside of self-driving companies Cruise, Wayve and WeRide and robotics firm MegaRobo, the top-performing AI firms in terms of money raised this year were software-based, according to Crunchbase. Contentsquare , which sells a service that provides AI-driven recommendations for web content, closed a $600 million round in July. Uniphore , which sells software for “conversational analytics” (think call center metrics) and conversational assistants, landed $400 million in February. Meanwhile, Highspot , whose AI-powered platform provides sales reps and marketers with real-time and data-driven recommendations, nabbed $248 million in January.

Investors may well chase safer bets like automating analysis of customer complaints or generating sales leads, even if these aren’t as “sexy” as generative AI. That’s not to suggest there won’t be big attention-grabbing investments, but they’ll be reserved for players with clout.

What to expect from AI in 2023 • TechCrunch

Deepfakes for all: Uncensored AI art model prompts ethics questions – TechCrunch

Deepfakes for all: Uncensored AI art model prompts ethics questions – TechCrunch

A new open source AI image generator capable of producing realistic pictures from any text prompt has seen stunningly swift uptake in its first week. Stability AI’s Stable Diffusion , high fidelity but capable of being run on off-the-shelf consumer hardware, is now in use by art generator services like Artbreeder, Pixelz.ai and more. But the model’s unfiltered nature means not all the use has been completely above board.

Fast Style Transfer for Arbitrary Styles with Beginner Notes from Tyler Garrett

For the most part, the use cases have been above board. For example, NovelAI has been experimenting with Stable Diffusion to produce art that can accompany the AI-generated stories created by users on its platform. Midjourney has launched a beta that taps Stable Diffusion for greater photorealism.

But Stable Diffusion has also been used for less savory purposes. On the infamous discussion board 4chan, where the model leaked early, several threads are dedicated to AI-generated art of nude celebrities and other forms of generated pornography.

View at Medium.com

Emad Mostaque, the CEO of Stability AI, called it “unfortunate” that the model leaked on 4chan and stressed that the company was working with “leading ethicists and technologies” on safety and other mechanisms around responsible release. One of these mechanisms is an adjustable AI tool, Safety Classifier, included in the overall Stable Diffusion software package that attempts to detect and block offensive or undesirable images.

However, Safety Classifier — while on by default — can be disabled.

Stable Diffusion is very much new territory. Other AI art-generating systems, like OpenAI’s DALL-E 2, have implemented strict filters for pornographic material. (The license for the open source Stable Diffusion prohibits certain applications, like exploiting minors, but the model itself isn’t fettered on the technical level.) Moreover, many don’t have the ability to create art of public figures, unlike Stable Diffusion. Those two capabilities could be risky when combined, allowing bad actors to create pornographic “deepfakes” that — worst-case scenario — might perpetuate abuse or implicate someone in a crime they didn’t commit.

Stable Diffusion

A deepfake of Emma Watson, created by Stable Diffusion and published on 4chan.

A deepfake of Emma Watson, created by Stable Diffusion and published on 4chan.

Women, unfortunately, are most likely by far to be the victims of this. A study carried out in 2019 revealed that, of the 90% to 95% of deepfakes that are non-consensual, about 90% are of women. That bodes poorly for the future of these AI systems, according to Ravit Dotan, an AI ethicist at the University of California, Berkeley.

“I worry about other effects of synthetic images of illegal content — that it will exacerbate the illegal behaviors that are portrayed,” Dotan told TechCrunch via email. “E.g., will synthetic child [exploitation] increase the creation of authentic child [exploitation]? Will it increase the number of pedophiles’ attacks?”

Montreal AI Ethics Institute principal researcher Abhishek Gupta shares this view. “We really need to think about the lifecycle of the AI system which includes post-deployment use and monitoring, and think about how we can envision controls that can minimize harms even in worst-case scenarios,” he said. “This is particularly true when a powerful capability [like Stable Diffusion] gets into the wild that can cause real trauma to those against whom such a system might be used, for example, by creating objectionable content in the victim’s likeness.”

Something of a preview played out over the past year when, at the advice of a nurse, a father took pictures of his young child’s swollen genital area and texted them to the nurse’s iPhone. The photo automatically backed up to Google Photos and was flagged by the company’s AI filters as child sexual abuse material, which resulted in the man’s account being disabled and an investigation by the San Francisco Police Department.

If a legitimate photo could trip such a detection system, experts like Dotan say, there’s no reason deepfakes generated by a system like Stable Diffusion couldn’t — and at scale.

“The AI systems that people create, even when they have the best intentions, can be used in harmful ways that they don’t anticipate and can’t prevent,” Dotan said. “I think that developers and researchers often underappreciated this point.”

View at Medium.com

Of course, the technology to create deepfakes has existed for some time, AI-powered or otherwise. A 2020 report from deepfake detection company Sensity found that hundreds of explicit deepfake videos featuring female celebrities were being uploaded to the world’s biggest pornography websites every month; the report estimated the total number of deepfakes online at around 49,000, over 95% of which were porn. Actresses including Emma Watson, Natalie Portman, Billie Eilish and Taylor Swift have been the targets of deepfakes since AI-powered face-swapping tools entered the mainstream several years ago, and some, including Kristen Bell, have spoken out against what they view as sexual exploitation .

But Stable Diffusion represents a newer generation of systems that can create incredibly — if not perfectly — convincing fake images with minimal work by the user. It’s also easy to install, requiring no more than a few setup files and a graphics card costing several hundred dollars on the high end. Work is underway on even more efficient versions of the system that can run on an M1 MacBook.

Stable Diffusion

A Kylie Kardashian deepfake posted to 4chan.

A Kylie Kardashian deepfake posted to 4chan.

Sebastian Berns, a Ph.D. researcher in the AI group at Queen Mary University of London, thinks the automation and the possibility to scale up customized image generation are the big differences with systems like Stable Diffusion — and main problems. “Most harmful imagery can already be produced with conventional methods but is manual and requires a lot of effort,” he said. “A model that can produce near-photorealistic footage may give way to personalized blackmail attacks on individuals.”

Berns fears that personal photos scraped from social media could be used to condition Stable Diffusion or any such model to generate targeted pornographic imagery or images depicting illegal acts. There’s certainly precedent. After reporting on the rape of an eight-year-old Kashmiri girl in 2018, Indian investigative journalist Rana Ayyub became the target of Indian nationalist trolls, some of whom created deepfake porn with her face on another person’s body. The deepfake was shared by the leader of the nationalist political party BJP, and the harassment Ayyub received as a result became so bad the United Nations had to intervene.

“Stable Diffusion offers enough customization to send out automated threats against individuals to either pay or risk having fake but potentially damaging footage being published,” Berns continued. “We already see people being extorted after their webcam was accessed remotely. That infiltration step might not be necessary anymore.”

With Stable Diffusion out in the wild and already being used to generate pornography — some non-consensual — it might become incumbent on image hosts to take action. TechCrunch reached out to one of the major adult content platforms, OnlyFans, but didn’t hear back as of publication time. A spokesperson for Patreon, which also allows adult content, noted that the company has a policy against deepfakes and disallows images that “repurpose celebrities’ likenesses and place non-adult content into an adult context.”

If history is any indication, however, enforcement will likely be uneven — in part because few laws specifically protect against deepfaking as it relates to pornography. And even if the threat of legal action pulls some sites dedicated to objectionable AI-generated content under, there’s nothing to prevent new ones from popping up.

In other words, Gupta says, it’s a brave new world.

“Creative and malicious users can abuse the capabilities [of Stable Diffusion] to generate subjectively objectionable content at scale, using minimal resources to run inference — which is cheaper than training the entire model — and then publish them in venues like Reddit and 4chan to drive traffic and hack attention,” Gupta said. “There is a lot at stake when such capabilities escape out “into the wild” where controls such as API rate limits, safety controls on the kinds of outputs returned from the system are no longer applicable.”

Deepfakes for all: Uncensored AI art model prompts ethics questions – TechCrunch